Gödel Incompleteness

Plan
We saw last time

- "COMPUTABLE" = computable by a TM
- \(L_{\text{Accept}}, L_{\text{Halt}} \) are UNDECIDABLE.
 i.e. \(\exists \text{TM to decide if } (\langle M \rangle, x) \in L \)

- Strings are COUNTABLE
 Languages are UNCOUNTABLE

The 1. Reals in \([0, 1]\) are UNCOUNTABLE
Pf. Suppose not. I an ordering

\[0 \]
\[0.00 \]
\[\vdots \]
\[0.45 \ldots \]
Consider \(i \)th position of \(i \)th number is 0

\[
\begin{array}{llll}
Y & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0.5
\end{array}
\]

Let the index for \(Y \) be \(j \).

What is \(Y \) in \(j \)th position?

- If \(Y_j = 0 \) then it is 1
- \(\neq 0 \)

\(\exists \) exist an ordering.

One more example of an UNDECIDABLE language for any string \(x \) from \(\Sigma^* \),

KOLMOGOROV COMPLEXITY

\[K(x) = \min \{ |M| + |y| : \text{TM } M \text{ on input } y \text{ outputs } x \} \]
\(L_k = \{ x \mid k(x) \geq \log n \} \)

Lemma. \(L_k \) is an infinite language.

Pf. For distinct \(x_1, x_2 \), we must have distinct \(\langle M, y_1 \rangle, \langle M, y_2 \rangle \).

Theorem 2. \(L_k \) is UNDECIDABLE.

Pf. Suppose \(\exists TM T \) that decides \(L_k \).

Consider \(TM M \):

- **on input integer** \(n \),
- **enumerate all strings** \(x \) of length \(n \)
- **check if** \(T \) **accepts** \(x \) (i.e. \(x \in L_k \))
- **output the first** \(x \) **that** \(T \) **accepts**.

Then, \(\forall n \), \(M \) outputs \(x \) s.t. \(k(x) \geq |x| \)

and \(|x| = n \).

But by definition, \(k(x) \leq |\langle M \rangle| + \log n \).
\[K(X) \leq 1^{|M|} + x \operatorname{log} n \]

i.e. \(n \leq C + \log n \)

which is a contradiction for \(n \) larger than a fixed number. So \(T \) does not exist.

\(L_K \) is not decidable.

Incompleteness

In [GÖDEL] any sufficiently powerful axiomatic system is either inconsistent or incomplete.

Sufficiently powerful: can encode Turing Machines

Inconsistent: a statement that can both be proved and disproved

Incomplete: a statement that can neither be disproved nor proved.

(a "true" statement that cannot be proved)

Pf. \(\text{HALT}(M, x) : \text{"TM } M \text{ halts on input } x" \)
Pf. \(\text{HALT}(M,x) \): "TM \(M \) halts on input \(x \)."

Assume that \(\text{HALT}(M,x) \) can be expressed in a given axiomatic system.

Suppose that:
- if TM \(M \) halts on \(x \) then there is a proof of \(\text{HALT}(M,x) \).
- if TM \(M \) does not halt on \(x \), there is a proof of \(\overline{\text{HALT}(M,x)} \).

Consider the following TM \(D \):

On input \(<M,x> \):

- Start at \(k=1 \)
 - Enumerate candidate proofs \(P \) of length \(k \)
 - If \(P \) is a proof of \(\text{HALT}(M,x) \), accept.
 - If \(P \) is a proof of \(\overline{\text{HALT}(M,x)} \), reject.
 - Set \(k=k+1 \).

Run assumption that there exists a proof for
By assumption that there exits a proof for either \(\text{HALT}(M,x) \) or \(\overline{\text{HALT}}(M,x) \), \(D \) will decide \(\text{HALT} \). Contradiction.

Another proof, using Kolmogorov complexity.

Th. Any consistent axiomatic system that can express "\(K(x) \geq n \)" is incomplete.

Pf. \(L_k = \{ x : K(x) \geq 1x1 \} \) is undecidable.

Suppose \(\Delta \) a consistent axiomatic system that can express "\(K(x) \geq n \)" and \(\Delta \) is consistent and complete. I.e., whenever \(K(x) \geq n \), there is a proof.

Assume that such a proof can be verified in the system.

Consider a TM \(M \) that on input integer \(n \),

- Enumerate integers \(\langle A, \phi \rangle \)

\[\vdots \]
- Enumerate integers \((x, y)\)
 - Enumerate strings \(x\) of length \(s\) and proofs \(p\) of length \(p\)
 - Check if \(p\) is a proof that \(K(x) \geq n\)
 - If so, output \(x\) and stop.

For any \(n\), \(M\) outputs \(x\) s.t. \(K(x) \geq n\)

i.e. \(n \leq K(x) \leq |M| + \log n \leq C + \log n\)

\(\exists n_0\) s.t. \(M\) fails for all \(n \geq n_0\).

(e.g. \(n \geq 2C\))

i.e. \(\exists x\) s.t. \(K(x) \geq n\) has no proof.

This is surprising since for any \(n\), there are many strings of length \(N + 1\) that have \(K(x) \geq n\). Just pick \(x\) at random from strings of length \(N + 1\).!!
from strings of length